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EXMOTIVE guaa

Large multiprocessing and distributed processing computer systems suffer
from diminishing returns in system performance as additional processors are
added. The slow execution speed of executive software is one of the principal
causes of this phenomenon. The purpose of the executive software is to
regulate the time when the various application programs gain access to the
computer system resources. This task investigated the potential of special-
purpose hardware to eliminate the execution-speed bottlenecks within executive
software. A unit, named the Hardware Executive, was designed and fabricated.

The Navy standard SDZX/M executive was used as a model. Algorithms were
developed for the executive functions of task creation, task dispatching, in-
tratask coordination, real-time clock management, and event-to-task registra-
tion and translation.

The Hardware Execut. e employs an associative memory for high-speed

manipulation of executive tables. It minimizes the number of context switches
by performing the executive functions in hardware external to the host proces-
sor. Context switching, the transfer of the resources from one routine to
another, is also minimized through executive algorithms that are insensitive
to pre-emption. The Hardware Executive is interfaced to the host processor
through its memory bus. This simple "memory-napped" interface permits inter-
facing to a large number of existing computers without modification of their
hardware or firmware. The interface also includes an interrupt for time-
critical events when this feature is desired.

The Hardware Executive concept can benefit any comercial or military
computer system where a large proportion of system capacity is lost because of
software executive overhead.
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1 • 4TRODUCTION

An executive currently is defined as a program which regulates when each
portion of the application software has access to the various resources of the
computer. The application software informs the executive of its needs and
available resources by calling executive service request (ESR) routines.
Often several executive service requests share common subroutine components.
The one or more subroutine components of an executive service request are
called executive functions.

A number of studies [1--6] have been made in search of methods of signifi-
cantly reducing the time spent in processing executive functions. Most of
these studies have concentrated on using microprogramming to replace software
bottlenecks. While the results vary because of differing architectures and
algorithms [1,7], it appears that microprogranued executive functions execute
approximately three times faster than their respective assembly language imple-
mentations. The chief source of speed improvement is the elimination of
nearly all instruction fetch cycles. Executive functions make heavy use of
data structures stored in memory. Consequently, the speed of the data access
cycle is the major limiting factor preventing still further speed improvement
through microprograming.

The purpose of this work is to examine the potential of special-purpose
hardware to improve the execution speed of the executive functions. Hardware
designed to perform executive functions an order of magnitude faster than
would be possible solely with software is presented.

1. Brown, George E., et al, Operating System Enhancement through Firmware,
10th Annual Workshop on Microprogramming (Micro-10), 1977, p 119-133.

2. Burkhardt, Walter H., and Helmut E. Maier, Micos: A Microprogrammed
Hierarchical Operating System Nucleus and Its Performance Comparison,
11th Annual Microprogra-ming Workshop (Micro-11), 1978, p 33.

3. Burkhardt, Walter H., and Ronald C. Randel, Design of Operating Systems
with Micro-Programed Implementation, Pittsburgh University, Sept 1973.

4. Chattergy, R., Microprogrammed Implementation of a Scheduler, 9th Annual
Workshop on Microprogramming (Micro-9), 1976, p 15-19.

5. Fogarty, J.R., et al, Hardware Command and Control System Study: Final
Report, Hughes Aircraft Co, Ground Systems Group, Fullerton CA, 18 Feb
1974, Navy contract N00123-73-C-2130 CDRL A002 submitted to Naval
Electronics Laboratory Center.

6. Smith, William B., et al, SYMBOL - A large experimental system exploring
major hardware replacement of software, SPRINT Joint Computer Conference,
1971, p 601-616.

7. Dearnley, P.A., Application level microcode to speed data base manage-
ment, Computer Journal, British Computer Society, v 22, no 3, Aug 1979, p
200-202.
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SDEX/M [8], the Navy standard executive for the AN/UYK-20, AN/AYK-14, and
forthcoming AN/UYK-44 general-purpose computers, is used as a working model
and source of terminology. Instead of replacing the SDEX/M software entirely
with hardware, attention is centered on extracting those executive functions
most frequently invoked, for which the greatest execution speed advantage is
expected. This paper presents a design to improve the performance of task
creation, task dispatch, signal and wait, event registration, cause event, and
real-time clock management functions. While not a part of SDEX/M, the Hard-
ware Executive can also improve the speed of buffer pool management in a
virtual memory system.

2. MOTIVATION FOR HIGH-SPEED XECUTIVE FUNCTIONS

The throughput of a multiprocessing system [5,9,101 increases less than
linearly with an increase in the number of processors. Each processor is
burdened not only with the coordination of its own activity but also with at
least some portion of the activity of the processors to which it is connected.
Increasing the number of processors increases the overhead in each processor.
Eventually, a point is reached where adding a processor has a negligible
effect or even decreases the usable throughput of the system. This is because
the increased overhead in all the processors totals more than the capacity of
the added processor.

An admittedly oversimplified example serves to illustrate the effect. One
of the major manifestations of executive overhead is table searching (figure
I). It is encountered in dispatch checking, real-time clock management, re-
source management, and event binding in a hierarchical event system. Consider
a multiprocessor system employing a common (shared) table. A configuration
consisting of a single stand-alone processor spends, say, 10 percent of the
time serially searching the table. Now consider adding a second processor to
improve system capacity. When the second processor is added, each processor
must examine the same table, which is now roughly twice as large. As a conse-
quence, the time each processor spends searching the table is roughly doubled.
Actually, the time is slightly less than doubled since, with more time spent
searching the table, there is less time available for other processing. With
slightly less processing, the table is also slightly smaller. The actual
portion of time spent searching the table is computed by normalization.

2 X 0.10

= 18 percent.

2 X 0.10 + ( 1 - 0.10

8. Naval Electronic Systems Command, Computer Program Performance Specifica-
tion for Standard Executive for use with AN/UYK-20 and AN/AYK-14 com-
puters, SDEX/M NAVSEA 0967-LP-598-2710, change 1, Dec 1980.

9. Chen, Tien Chi, Parallelism, Pipelining, and Computer Efficiency, Com-
puter Design, Jan 1971, p 69-74.

10. Wulfinghoff, Donald R., Code Activated Switching: A Solution to Multipro-
cessing Problems, Computer Design, Apr 1971, p 67-71.
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Figure 1. Multiprocesing system where all processors search a common table.

The time each processor spends searching the table continues to increase as
more processors are added to the system.

NUMBER OF PERCENTAGE PERCENTAGE SYSTEM

POCZSSORS OF TIME OF TIME CAPACITY
iN SYSTEM SEARCHING NOT SEARCHING NOT SEARCHING

1 10 90 0.90
2 is 82 1.64
3 25 75 2.25
4 31 69 2.76
5 36 64 3.20
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Since table searching is an important component determining the speed of
executive processing, executive software often exhibits similar characteris-
tics. A good example is a common task table in a multiprocessor in which the
highest-priority task ready for execution is dispatched on the first available
processor. The dispatch check performed by each processor must examine all
the tasks in the system. The larger the system, the more tasks each processor
must examine.

Message processing in a distributed processing system also suffers from
diminishing returns as processors are added. One example is SEAMOD [11], a
proposed Navy distributed command and control system architecture. The pro-
cessors of the system are interconnected through a high-speed message bus.
The table below [12] shows the processor capacity required for message proces-
sing on various configurations.

CONFIGURATION PROCESSORS REQUIRED

System Bus Execu- Appli- Message Percent
tive cation Overhead Increase

SDEX-20 18.5 50.0 %
Broadcast

SEAMOD SDEX-M 11.2 30.3 %
LOMIX 37
(FFGX) Point SDEX-20 20.5 55.4 %

to
Point SDEX-M 12.1 32.7 %

SDEX-20 25.0 52.1 %
Broadcast

SEAMOD SDEX-M 15.1 31.5 %
HIMIX 48
(DD 963) Point SDEX-20 27.7 57.7 %

to
Point SDEX-M 16.3 34.0 %

The only overhead included in the figures is from the executive functions of
I/O chain initialization, interrupt-to-event binding, and dispatch of the
buffer allocator and application tasks. Execution of the buffer allocator and
I/O handlers is not included. As can be seen from the table, from 30.3 to
57.7 percent more processors are required, depending on the configuration,
simply to perform the executive functions associated with message traffic of
the distributed system.

11. Mundell, J.L., et al, Conceptual Design of a Distributed Combat Direction
System for a Modular Frigate (SEAMOD FFGX), prepared by System Explora-
tion, Inc, under Navy Contract N00123-76-C-0787, Feb 1978, for Naval
Ocean System Center, NOSC Technical Note 356. °

12. Sperry Univac, Defense Systems Division, Navy Standard Computer Adapta-
tion Study, v 1: Application Requirements, Navy Contract
N66001-78-C-0258, July 1979, Final Report, prepared for NOSC.



Another example of the problem is illustrated by an experiment performed
by the developers of the Shipboard Integrated Processing and Display System
(SHINPADS) (13] for the Canadian Navy. They wished to demonstrate 2 megabits
of data traffic on a triaxial cable bus interconnecting 10 AN/UYK-20 emula-
tors. Each computer generated and received one-tenth of the 2-megahertz traf-
fic. Using 200-bit messages, this meant that each computer generated and
received one message every 1000 microseconds. It was found that the 1000
microseconds was consumed almost entirely by the executive software. Not only
does such a system fail to apply the power of 10 computers to the performance
of application work; it fails to do almost any useful work.

The problem is that the execution speed of the executive functions is too
slow in a conventional processor. The executive functions considered in the
SEANOD example, when executed on an AN/UYK-20 processor, require 1120 microsec-
onds per message using SDEX/20 or 660 microseconds per message using SDEX/M.
The motivation for high-speed execution of executive functions in hardware is
the reduction of overhead in each processor of a multiprocessor or distributed
processor system to extend the point of diminishing return to a larger number
of computers.

3. MATURE OF THE EXECUTIVE IMPLEMENTATION PROBLEM

A number of presently implemented software executives were examined to
determine where they spend their time. Three basic areas were identified
which consume a large proportion of time: linked-list manipulation, context
switching, and error checking.

Table and linked-list manipulation represent the actual service provided
by the executive. Such manipulation is fundamentally a software implementa-
tion of what hardware engineers call a state machine. In the state machine
model, the executive service request (ESR) is the input, the identity of the
next running task is the output, and the content of the various internal
tables is the machine state. Executive functions are the algorithms used to
transform the present state into the next state.

_4- ..----- - r. -------
EXECUTIVE- EXECUTIVE INTERNAL NEXT TASK
SERVICE FUNCTIONS T . ABLES IDENTIFIER
REQUEST l
(INPUT) I (TRANSFORM) ( (STATE) 'I (OUTPUT)(,NUT fl- L......--- .. ..... J_ IOUPT

I I

13. Kuhns, Richard C., A Serial Data Bus System for Local Processing Net-
works, 18th IEEE Computer Society International Conference, Spring 1979,
IEEE Catalog no 79CH1393-8C, p 266-271. (SHINPADS is also discussed in
the Naval Engineering Journal, April and June 1979.)
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One of the ways the Hardware Executive improves executive performance is by
implementing this state machine problem in hardware specifically designed for
the purpose. An associative memory is used to quickly locate the current
state of the task or event referenced by the input executive service request.
Additional hardware is provided to manipulate the state at the bit rather than
word level.

Context switching is a form of overhead encountered when resources
occupied by one routine, typically the processor and its registers, are trans-
ferred to another routine. One source of context switching is the transfer
from the application software to the executive software and back again. Hard-
ware implementation of the executive can reduce this form of context switching
by providing separate resources for the executive which are independent of
those used by the application software. Another form of context switching
results from the specification of re-entrant executive functions. An execu-
tive function is made re-entrant to permit its pre-emption by an interrupt
handler desiring utilization of the same function. Future experience may show
that the existence of executive functions implemented in hardware that run an
order of magnitude faster than their software counterparts eliminates much of
the requirement for pre-emption. But even if this proves false, the Hardware
Executive has been designed to allow pre-emption. This is accomplished by
using the same principle employed in the "test and set" (Biased Fetch in the
AN/UYK-20) instructions of many modern computers.

Error checking can be divided into software development debug aids and
operational self-preservation when the system is overloaded. Code for the
first type of error is often complex and not very structured. By definition,
it is seldom executed after the system has been developed. For these reasons
and because of the difficulty of implementing it in hardware, emphasis was
placed on the second type of error.

4 * SOFTWARE INTERFACE

The software programuer co municates with the Hardware Executive by using
a technique commonly known as "memory mapping." Each executive function is
assigned a dedicated address in the memory address space of the computer. The
particular address accessed implies the function to be performed. The data
read from or written to the executive function address is the operand of the
executive function. The DISPATCH CHECK function, for example, gives the iden-
tity of the highest-priority task that should obtain control of the computer.
It is performed by reading the contents at the dedicated DISPATCH CHECK func-
tion address.

The Hardware Executive maintains task and event tables internally. These
are also mapped into the computer memory address space. They can be read or
written like conventional memory. The user must not write into them indiscrim-
inately, however, since their contents have an impact on the proper operation
of the algorithms implementing the executive functions.

10



4.1 TASK ANRAGUIDF

A task is created by specifying an entry for the task in the internal
task table of the Hardware Executive. First, an empty location in the task
table must be obtained by reading from the dedicated RESERVE TASK executive
function address. The RESERVE TASK function returns to the host processor a
positive index into the task table of an empty task table location. If no
empty task table locations are available, the function returns to the host
processor a negative number instead. This index is then used to directly load
the task parameters into the task table entry.

A task known to the executive is in one of five possible states at any
given time.

Running: The task is executing on the host processor.

Ready: The task can execute on the host processor.

Waiting: The task cannot execute on the host processor until
cleared to do so by a flag called a semaphore.

Suspended-Ready: The task is explicitly prevented from executing on
the host processor.

Suspended-Waiting: The task is explicitly prevented from executing on
the host processor, but if it were not explicitly
prevented, it would still be unable to execute until
cleared to do so by a flag called a semaphore.

The RESERVE TASK function initializes the task to the Suspended-Ready task
state to prevent accidental dispatch until the task table entry is completely
specified.

The task management executive functions control the movement of a task
from one state to another (figure 2).

The DISPATCH CHECK function selects, from among the tasks in the Ready
and Running task states, the task with the highest priority. The priority is

a positive number, supplied by the user, which indicates the relative impor-
tance of executing the associated task before other tasks when a choice is
possible. A low numeric value represents a high priority. If two or more
tasks with the same priority are in the Ready or Running task states, they are
executed on a first-come-first-served basis. The DISPATCH CHECK function re-
turns to the host processor the index in the task table of the task placed in
the Running state. The host processor then uses this index to perform the
task-to-task context switch. If no task can be placed in the Running state,
the DISPATCH CHECK function returns a negative number to the host processor.
This directs the host processor to loop in an idle state, awaiting activity.

The WAIT function is used to move a task in the Running task state into
the Waiting task state if the resource it desires is not available. For ex-
ample, the user may desire that only one task at a time have access to a

i11i



t p

0: w

LU w
to) CA

LUU 0

2 wO)

> -J
(.3 4

zI z

2~12

La oi-l



printer. All tasks invoke the WAIT function to determine whether the re-
source, in this case the printer, is available before an attempt is made to
access it. Availability of a resource is indicated by a flag called a sema-
phore. The semaphore for each resource is given a unique Semaphore Identifier
by the user. The WAIT function first checks the Semaphore field of all the
nonsuspended tasks in the task table to determine whether any other task is
using the semaphore specified by the operand of the WAIT function. If none is
found, the resource is available and the task invoking the WAIT function can
remain in the Running task state. Otherwise4 the task is moved from the
Running task state to the Waiting task st.td In either case, the Semaphore
Identifier specified by the operand of the WAIT function is stored in the task
table entry of the task that invoked the WAIT function. If the resource is
available, this claims the resource for the task that invoked the WAIT func-
tion. If the resource is not available, it puts the task on the waiting list.
The WAIT function should be followed by a DISPATCH CHECK function since the
task currently in the Running task state may now be in the Waiting task state.

The SIGNAL function is used to announce that a resource is now available.
It first searches for the highest priority nonsuspended task waiting on the
semaphore specified by the SIGNAL function operand. Once found, the task is
moved from the Waiting task state to the Ready task state and its Semaphore
field in the task table is cleared. The SIGNAL function should be followed by
a DISPATCH CHECK function since the task just placed in the Ready task state
may have a higher priority than the task currently in the Running task state.

The SUSPEND function is used to explicitly exclude a specified task from
consideration by the DISPATCH CHECK function. If the task is in the Ready or
Running task state, it is moved to the Suspended-Ready task state. If the
task is in the Waiting task state, it is moved to the Suspended-Waiting task
state. The SUSPEND function should be followed by a DISPATCH CHECK function
to obtain the identity of the next task in the Running task state.

The RESUME function is the converse of the SUSPEND function. If the task
is in the Suspended-Ready task state, it is moved to the Ready task state. If
the task is in the Suspended-Waiting task state, it is moved to the Waiting
task state. Since the resource required by a task in the Suspended-Waiting
task state may be available by the time the RESUME function is invoked, the
semaphore test is repeated. The RESUME function should be followed by the
DISPATCH CHECK function since a task now in the Ready task state may have a
higher priority than the task currently in the Running task state.

To destroy a task, the user must first execute the SUSPEND function to
properly exclude the task from further dispatch. Once the task is in the
Suspended-Ready or Suspended-Waiting task state, it is ignored by all execu-
tive functions except the RESUME function. In this state, the task table
entry for the task can be cleared directly.

4.2 3VIT NANAGDzNT

The Hardware Executive distinguishes among normal events and time events
(figure 3). A normal event is an event triggered explicitly by the user with
the CAUSE NORMAL EVENT executive function. A time event is an event triggered
by a preset time interval.

13
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-EXECUTIVE FUNCTION ACCESS
DIRECT TABLE ACCESS

Figure 3. Hardware executive event state diagram.

Normal and time event registrations are maintained in separate tables
within the Hardware Executive. An event is registered by first obtaining an
empty event table location by means of either the RESERVE NORMAL EVENT or the
RESERVE TIM EVENT functions. These functions return a positive index to the
host processor by which the user can load the table entry. Return of a nega-
tive number indicates that no empty table locations are available.

An event known to the executive has one of two possible states at any
given time.

Armed: The executive is ready should the event occur.

Triggered: The event has been recognized but the semaphore
associated with the event is still not signalled.

The CAUSE NORMAL EVENT function matches the event specified by the func-
tion operand with a qualifying event registration in the normal event table.
The event registration selected is then moved from the Armed event state to
the Triggered event state. The CAUSE NORMAL EVENT function should be followed
immediately by a NORMAL EVENT SIGNAL CHECK function. The NORMAL EVENT SIGNAL
CHECK function signals the semaphore associated with the highest priority nor-
mal event registration in the Triggered event state. A negative number is re-
turned to the host processor when no event registrations remain in the
triggered state. The NORMAL EVENT SIGNAL CHECK function, in turn, should be
followed by a DISPATCH CHECK function since the task just signalled may have a
higher priority than the task currently in the Running task state.

Time events are triggered automatically by a Real-Time Clock within the
Hardware Executive. The TIME EVENT SIGNAL CHECK function performs the same
function for time events as the NORMAL EVENT SIGNAL CHECK function performs
for normal events. It should be invoked periodically by the user. Since
several tasks may be signalled at the same time, ,the function should be
repeated until it returns a negative result. Finally, the DISPATCH CHECK
function should be performed to select the highest-priority task for execution.

14



5 HARDWARE DESIGN

This section first presents the external functional interface of the
Hardware Executive, followed by a detailed description of its internal logic
design. The executive functions and their implementation algorithms are then
presented. Finally, the microprogram algorithms used to implement the various
executive functions are presented.

5* 1 HOST PROCESSOR IITERFACE

The Hardware Executive interfaces to a host processor through the memory
interface of the host processor. This is a common technique known as "memory
mapping." The programmer selects the executive function to be performed by
apecifying the memory address of the function. The operand associated with
tne executive function is passed as data read to or written from that address.
For example, a task DISPATCH CHECK function is executed by reading the task
identifier from the dedicated DISPATCH CHECK function address. A SIGNAL sema-
phore function is executed by writing the semaphore identifier into the
dedicated SIGNAL function address.

The Hardware Executive maintains internally a task table, a normal event
table, and a time event table. These tables are also mapped into the host
processor address space. This enables the host processor to initialize the
task or event state after the Hardware Executive has provided an empty table
entry. A task is created when the host processor reads a new task identifier
from the RESERVE TASK function address. The task identifier is equivalent to
an index into the task table address space. The host processor can then use
this index to directly initialize the task priority, state, and semaphore
fields. Normal and time events are created in a similar manner by using the
RESERVE NORMAL EVENT and RESERVE TIME EVENT functions.

The Hardware Executive utilizes associative memory to store the task and
event tables. An associative memory, often called a content-addressable
memory, is a memory which, when given the content of one or more of its loca-
tions, returns the address or addresses of the locations with those contents.
The associative memory thus implements a table search in hardware. The asso-
ciative memory locations are called elements to avoid confusion with other
uses of the word location. The associative memory of the Hardware Executive
is designed to permit searches on any bit position or set of bit positions
within its elements. For example, one bit position of the task table loca-
tions indicates whether the table location is empty or contains a task table
entry supplied by the user. The RESERVE TASK function searches on this bit
position to find an empty table location.

In addition to the interface through the memory bus of the host proces-
sor, the Hardware Executive also connects to the host processor through an
interrupt it generates for time-critical events. This interface is only
necessary if time-critical event processing by the Hardware Executive is
desired.
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5.1.1 AN/UYK-20 Interface

The AN/UYK-20 computer was not designed for expansion beyond 64k words of

memory. Consequently, an off-the-shelf AN/UYK-20 must be slightly modified
internally before the Hardware Executive can be connected.

The breadboard built to demonstrate the Hardware Executive concept was
interfaced to an AN/UYK-20 (without the DMA option) by using the DMA connector
and card slot (figure 4). A new printed circuit board was designed for the
DMA card slot to act as an interface between the internal AN/UYK-20 memory bus
and the Hardware Executive connected through the DMA connector. The DMA con-
nector provides a convenient means of getting through the box without mechani-
cal modifications. The interface card compares the address of all memory
accesses with the dedicated address space of the Hardware Executive. The dedi-
cated address space is programmed on the card through straps. When a match
occurs, the AN/UYK-20 READ INITIATE signal, which is daisy-chained through the
interface card, is inhibited, thus preventing the AN/UYK-20 core memory from
receiving a memory initiate request. This technique effectively disconnects
the core memory for those addresses dedicated to the Hardware Executive.

5.1.2 AN/AYK-14 Interface

The AN/AYK-14 CPU provides the option of interfacing to either the
virtual or the physical address space. Virtual addresses from the CPU are
paged into physical addresses by the Memory Control Module (MCM). There are
two data busses, called "M" and "X", connecting the CPU to the MCM. If the
Hardware Executive is interfaced within the virtual address space, then it
must be made dual-ported so that memory accesses from either bus will be pro-
cessed. The physical address space can also be configured into two busses to
permit interleaving. Here, the need for a dual-ported interface is not as
critical since one could map the Hardware Executive address space into only
even words, leaving the odd words unused. One advantage of the AN/AYK-14 is
that its physical address space, 512k words, is large enough that leaving some
unused memory locations does not represent much of a percentage loss in the
entire address space.

Unlike the AN/UYK-20, the AN/AYK-14 has an external expansion connector
with all the necessary signals present.

5.2 INTERNAL CONSTRUCTION

The design of the Hardware Executive is functionally divided into four
parts: Associative Memory Logic, Memory Selection Logic, Register Logic, and
Microsequence Control Logic.

5.2.1 Associative Memory Logic

The Associative Memory Logic is used to implement the storage and search
of executive tables. A block diagram of the Associative Memory Logic is shown
in figure 5.

The heart of the Associative Memory Logic is a conventional random access
memory (RAM). The RAM is constructed to provide independent read/write con-
trol of each bit position of the addressed word. This in accomplished by
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using a separate memory component for each bit position. Note that each bit
position has an independent data input (DI), data output (DO), write enable
(WE), and general enable (E). All the bits of the word share the same address
input (A) and a common general enable (AS). The write enable (WE) and both
general enables (E and AS) must all be true for data to be written. The write
enable must be false and both general enables must be true for data to be
read. When these conditions are not met, the data output (DO) is a one.

The RAM data output (DO) associated with each bit position is connected
to one input of a serial adder/subtractor associated with that bit position.
The other input of all these serial adder/subtractors is connected to a common
signal called EKIT. Each serial adder contains an output register for synchro-
nization of its output with the system clock.

The RAM data inputs are connected to the output of a multiplexer. The
multiplexer selects, for all memory word bit positions simultaneously, either
the output of the respective serial adder/subtractor associated with each bit
position or a common input of EMIT.

The general enable from each RAM bit position (E) is connected to the
output of a flip-flop called a Capture Flip-Flop. When the common general
enable (AS) is true, the presence of zero or one in a Capture Flip-Flop
enables or disables the respective associated memory bit position. When a
memory bit position is disabled, attempts to write into the memory bit posi-
tion are ignored and attempts to read result in a memory bit position data
output (DO) of one regardless of the memory contents. The Capture Flip-Flops
are clocked whenever the common Capture Flip-Flop enable input (EE) is true.

The data inputs of the Capture Flip-Flops are connected to the output of
another multiplexer. This multiplexer selects, for all Capture Flip-Flops
simultaneously, either the output of the serial adder/subtractor ORed with the
previous output of the Capture Flip-Flop for the respective bit position, an
independent input (BI) for the respective bit position, or zero. The first of
these selections permits the occurrence of a one generated by the respective
serial adder/subtractor to be "captured," that is, to remain in the Capture
Flip-Flop for succeeding clock cycles. The other multiplexer selections are
used to initialize the Capture Flip-Flops.

The outputs of the Capture Flip-Flops are connected to two additional
places. They connect to a gate, called the Anticipate All Capture Gate, whose
output (AACG) is true if and only if all the Capture Flip-Flops will be in the
one state if the Capture Flip-Flops are clocked. They also connect to bus
buffers permitting their output to be logically connected or disconnected from
a bus (BO). The bus consists of independent signals for each respective
memory bit position.

As shown in figure 6, the Asseciative Memory Logic is partitioned into
identical banks. Each bank contains a segment of the total memory word
addressed by the common address lines (A). Two busses, one for input (BI) and
the other for output (BO), interconnect the banks. The general enable input
(AS) and the Anticipate All Capture Gate output (AACG) for each bank remain
independent, thus permitting the banks to be selected and examined
individually.
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5.2.2 Memory Selection Logic

The Memory Selection Logic interconnects the banks of Associated Memory
via the Input and Output Busses (BI and BO) and the independent signals (AS,
BE, ER, and AACG) of each Associative Memory Logic bank. A block diagram of
the Memory Selection Logic is shown in figure 7. The Memory Selection Logic
consists of the Bank Selection Logic and the Bit Selection Logic. The Bank
Selection Logic is used to control the activation of the Associative Memory
Logic banks by generating an independent general enable (AS) for each bank.
It also activates one of the independent Output Bus buffer enables (BE) to
logically connect the output of a single bank which it selects to the Bit
Selection Logic. Similarly, the Bit Selection Logic controls the activity of
the bit positions within each bank.

Internally, the Bank Selection Logic contains a Bank Capture Flip-Flop
for each bank. The output of each Bank Capture Flip-Flop is connected to a
respective bank general enable (AS). As in the case of the Associative Memory
Logic Capture Flip-Flops, contents of zero and one are defined as enable and
disable, respectively. A particular bit position within the Associative
Memory Logic word is enabled only if both its Associative Memory Logic Capture
Flip-Flop and its Bank Capture Flip-Flop contain zero.

A multiplexer supplies the input to the Bank Capture Flip-Flops. It
selects either the Bank Priority Logic output, the Bank Decoder output, or
zero.

The Bank Priority Logic is used to determine the highest-priority bank
containing at least one Associative Memory Logic Capture Flip-Flop in the zero
state. The inputs to the Bank Priority Logic are the independent outputs of
the Anticipate All Capture Gates (AACGs) from each Associative Memory Logic
bank. Both encoded and decoded priority output are provided by the Bank
Priority Logic. An eight-bit gate-level implementation is shown in figure 8.
The encoded output provides th# most-significant input to the Priority Regis-
ter, which is located within the Register Logic and is the subject of the next
section. The Bank Capture Flip-Flop input multiplexer uses the decoded out-
put. The decoded output also provides independent Output Bus buffer enables
(BEs) for each Associative Memory Logic bank.

The Bank Decoder and zero multiplexer selections are used to initialize
the Bank Capture Flip-Flops. All Bank Decoder outputs are ones except the
output addressed by a field of the Exchange Register. The Exchange Register
is part of the Register Logic which is discussed in the next section. This
path permits the contents of the Exchange Register to address a single bank
directly by loading all the Bank Capture Flip-Flops with ones except the bank
being addressed.

In addition to the Bank Selection Logic, the Memory Selection Logic also
contains the Bit Selection Logic, which is used to control the activity of the
bit positions within the Associated Memory Logic banks. This is accomplished
through the input (BI) and output (BO) busses which interconnect all the banks
in parallel.
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The Bit Selection Logic contains a Bit Decoder driven by the Exchange
Register of the Register Logic. The output of the Bit Decoder is logically
connected to the Output Bus (BO) through its own bus buffer. The buffer
selected by the Bank Selection Logic is forced to disconnect when the Bit
Decoder buffer is enabled. The Bit Decoder works in conjunction with the Bank
Decoder so that a single bit position within a single bank can be addressed by
the Exchange Register.

The Bit Selection Logic also contains Bit Priority Logic. This is
designed in the same manner as the Bank Priority Logic. The Bit Priority
Logic prioritizes the bits found on the Output Bus (BO). Its decoded output
directly drives the Input Bus (BI). Its encoded output generates the least-
significant input to the Priority Register within the Register Logic.

Functionally, it seems more appropriate to logically connect the Bit
Decoder to the Input Bus (BI) rather than to the Output Bus (BO), since its
final destination is the Input Bus inputs of the Associative Memory Logic. By
logically connecting the Bit Decoder to the Output Bus (BO), the same result
is produced, since the decoded output of the Bit Priority Logic will echo its
input when only one bit position is activated. The Output Bus was chosen
because the Bit Priority Logic is in a critical timing path.

5.2.3 Register Logic

The Register Logic encompasses the interface to the host processor, the
Exchange Register, the Priority Register, the Sub-Priority Counter, the Real-
Time Counter, and the E24IT Generation Logic. A block diagram is shown in
figure 9.

The Exchange Register holds the data word received from the host proces-
sor during its write operation. Depending on the function invoked, the
contents of the Exchange Register may then be transferred to the Clock Counter
or be used in serial form by the Associative Memory Logic through the E4IT Gen-
eration Logic. The Exchange Register holds the data output to be sent to the
host processor during its read operation. Depending on the function invoked,
the contents of the Exchange Register may originate from the Clock Counter,
the Priority Register, or the Associative Memory Logic. In the latter case,
the Exchange Register operates as a shift register tl colie.4 the bits gener-
ated by the Associative Memory Logic.

The Priority Register is a register which maintains the priority-encoded
result of the last prioritization of the Memory Capture Flip-Flops. Input to
the most- and least-significant halves of the Priority Register is generated
by the Bank Priority Logic and Bit Priority Logic portions of the Memory
Select Logic, respectively.

The Sub-Priority Counter is an up-down counter used with the priority
queue algorithm. Its contents can be incremented, decremented, or initialized
with the contents of the Exchange Register.

The Real-Time Counter is used to maintain the current time. Its contents
can be incremented or initialized with the contents of the Exchange Register.
The Real-Time Counter is partitioned into most- and least-significant portions
for greater time interval range. Loading and incrementing of the Real-Time
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Counter is under the control of the Microsequence Control Logic to ensure
proper synchronization with its algorithms.

The EIT bit, the output of the EMIT Generation Logic, is used by the
Associative Memory Logic as a common data input to all its serial adder/
subtractors and a common data input to all its memory data input multiplexers.
The EMIT Generation Logic consists of a serial adder and two multiplexers,
called bit selectors, which feed its inputs. One bit selector is wired to
select any of the Exchange Register bits, any of the Sub-Priority Counter
bits, or zero. The other bit selector is wired to select any of the Real-Time
Counter bits or zero. The multiplexers are wired such that, if both multi-
plexers select from a register or counter rather than zero, the same bit
position is accessed. The output of the serial adder is the EMIT bit.

5.2.4 Microsequence Control Logic

The Microsequence Control Logic generates the control signals for the
rest of the logic of the Hardware Executive processor. It contains the clock
oscillator, the host processor interface control logic, microprogram memory,
and logic to generate the next microinstruction address. A block diagram of
the Microsequence Control Logic is shown in figure 10.

The circuitry that generates the microinstruction addresses for all micro-
instruction cycles is called the Transform Logic. Usually, the Transform
Logic obtains the bits constituting the next microinstruction address from a
field in the microinstruction. There is no counter circuit acting as a pro-
gram counter. The Transform Logic is used to convert the address presented by
the host processor into a microprogram entry address. The signals indicating
whether the host access is a read or a write are used by the Transform Logic
in conjunction with the host-provided address to generate unique microprogram
entry addresses for each combination within the Hardware Executive address
space. The Transform Logic also performs conditional jumps on the state of
the Anticipated All Captured signal, the logical OR of the individual Antici-
pated All Capture Gate outputs (AACGs) from the Associative Memory Logic banks.

5.3 EXECUTIVE FUNCTION INTERNAL OPERATION

This section presents the algorithms used to implement various executive
functions on the hardware described above. A complete summary of executive
functions is given in appendix A.

5.3.1 Table Organization

The Task and Event Tables are stored in an associative memory. The asso-
ciative memory is implemented from conventional random access memory (RAM).
The word at a particular physical RAM address contains a bit for the same bit
position of every entry provided by the host processor. One way to visualize
this organization is to view the associative memory as a two-dimensional ma-
trix of bits where segments of rows correspond to words mapped into the host
processor address space and columns correspond to words of physical RAM. When
the host writes directly into the tables, the microprogram of the Hardware
Executive must serially loaA the word from the host a bit at a time into suc-
cessive physical RAM addresses. Similarly, when the host reads directly from

I
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the tables, the operand read must be collected serially from successive physi-
cal RAN addresses. The format of the task and event tables is presented in
appendix B.

Task Table entries are logically divided into six fields. The first,
consisting of a single bit called the Empty Bit, indicates whether the table
location is empty or contains valid table data. There are two priority
fields. The User Priority field is loaded by the host processor. The Queue
Priority field is maintained by the Hardware Executive microprogram. It is
used to order tasks on a first-come-first-served basis within a given user
priority. The Task State field contains three bits to indicate one of five
possible states: Suspended-Waiting, Suspended-Ready, Waiting, Ready, and
Running. When the task is waiting on a semaphore, the Wait Semaphore field
contains the associated Semaphore Identifier. The last field is the Processor
field. It is only required for multiprocessor applications when a common
Hardware Executive is used. It indicates which processor is taking custody of
a Task.

Normal Event Table entries have five fields. The Empty Bit and Processor
fields serve the same functions as above. The Normal Event Registration field
contains the event registration hierarchy information. The Event State field
contains one bit to indicate whether the event is Armed or Triggered. Final-
ly, the Signal Semaphore field contains the Semaphore Identifier of the Sema-
phore to be signalled when the event is triggered. Entries of the Time Event
Table have the same format as those of the Normal Event Table except that the
Event field is replaced with the absolute time the event is to be triggered.

5.3.2 INITIALIZE Functions

The Empty Bit of the task and event table locations indicates whether the
location contains relevant data or is empty. Values of zero and one represent
allocated and empty, respectively. Execution of the INITIALIZE function estab-
lishes all table locations as empty by setting their respective Empty Bits.
Since the random access memory (RAM) components implementing the associative
memory access the same bit position of all table locations simultaneously, the
setting of all Empty Bits is accomplirhed with a single access cycle for each
table. The INITIALIZE function also clears the Task Queue Priority Counter of
the Register Logic.

5.3.3 Reserve Task and vent Functions

The RESERVE TASK function searches for an empty task table location and
returns its index to the host processor if found. It also clears the Empty
Bit and sets the Task State field to Suspended-Ready within the entry location
selected. A negative index returned to the host processor indicates that no
task table locations are available.

The microprogram performs the search by first addressing the physical RAM
word containing all the Empty Bits. If the bit is a one, then the associated
table entry is defined as empty. Each bit is complemented by its adder/
subtractor and then loaded into its respective Associative Memory Capture
Flip-Flop. On the next microinstruction cycle, the Anticipated All Captured

Gate (AACG) outputs from the Associative Memory Logic banks are prioritized by
the Bank Priority Logic. At this point, the Bank Priority Logic enables the
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Associative Memory Logic Output Bus Buffer of the highest-priority bank con-
taining at least one empty location. The contents of the Output Bus are then
prioritized by the Bit Priority Logic to choose the highest priority empty
location. The encoded output of the Bank and Bit Priority Logic is loaded
into the Priority Register at the end of the cycle. The next cycle moves the
Priority Register contents to the Exchange Register. At this point, the
Exchange Register contains the index of the location to be returned to the
host processor. It is also routed through the Bank and Bit Decoders to set
the capture flip-flops so that only the entry to be allocated is enabled.
Finally, the Empty Bit of the enabled entry is cleared, and the Task State
field is initialized to Suspended-Ready. The algorithm is the same for the
Event Table mutatis mutandis.

5.3.4 SUSPiD and RESUME Task Functions

The SUSPEND function is designed to exclude a task from further dispatch.
If the task is in the Ready or the Running task states, the SUSPEND function
moves it to the Suspended-Ready task state. If the task is in the Waiting
task state, the SUSPEND function moves it to Suspended-Waiting task state.
The RESUME function reverses the process. The Suspend Bit, one of the bits of
the Task State field, is dedicated to indicating whether the task is suspended
or not. When the Suspend Bit contains a one, the task is suspended and hence
is not included in dispatch checks.

First, the SUSPEND and RESUME functions must, respectively, set and clear
the Suspend Bit. The functions are implemented by loading the data supplied
by the host processor into the Exchange Register, then loading the output of
the Bank and Bit Decoders into the Associative Memory Capture Flip-Flops to
enable a single task table entry, and finally writing the appropriate value
into the Suspend Bit of the selected entry.

When the RESUME function is applied to a task in the Suspended-Ready task
state, the task enters the Ready task state. Any time a task enters the Ready
task state from one of the other task states, the contents of the Task Queue
Priority Counter must be copied into the Task Queue Priority field of the
associated task table entry. The contents of the Task Queue Priority Counter
are then incremented. This enables succeeding tasks entering the Ready task
state to have progressively higher numeric subpriorities.

When the SUSPEND function is applied to a task in the Ready or Running
task states, the task enters the Suspended-Ready state. Any time a task moves
from the Ready or Running states to some other state, the Task Queue Priority
fields of all tasks with numerically higher subpriorities and the Task Queue
Priority Counter must be decremented. This prevents subpriority overflow.

5.3.5 DISPATCH CHECK Function

The DISPATCH CHECK function returns to the host processor the task table
index of the task with the highest Task Priority whose Task State is either
Ready or Running. A negative result is returned if no task qualifies.

Task Priority should not be confused with the Bank and Bit Priority Logic
of the hardware implementation. The Task Priority consists of the contents of
the Task User Priority field and the Task Queue Priority field. The content
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of the Task User Priority field is supplied solely by the host processor which
writes directly into the Associative Memory address space during task crea-
tion. The content of the Task Queue Priority field is supplied by the Queue
Priority Counter of the Register Logic and is under the control of the micro-
program. The Bank and Bit Priority Logic serves an entirely different func-
tion. It selects a single table entry from all the table entries whose
Associative Memory Capture Flip-Flops contain zero. It thus provides a way to
select a unique table entry when several satisfy the same given criteria.

The DISPATCH CHECK function first initializes all the Capture Flip-Flops
to zero. One of the microprogrammable functions of the Associative Memory
Capture Flip-Flops causes them to be set to one by an output of one from their
respective Associative Memory entries. Once set, however, they remain set
throughout the continuous use of the same function during the succeeding micro-
instruction cycles. This capture microinstruction function is first applied
to the task table Empty Bit. Only those task table locations whose Empty Bits
are zero, indicating that the table locations contain a table entry, will have
zero in their respective Associative Memory Capture Flip-Flops at the end of
the cycle. This capture microinstruction is next applied to the Suspend Bit
of the Task State field. At the end of this cycle, only those task table
locations for whom both the Empty Bit and the Suspend Bit are zero have zero
in their respective Associative Memory Capture Flip-Flops. The same technique
is next applied to the Wait Bit of the Task State field. The Wait Bit is one
if the task is waiting on a semaphore and zero otherwise. The strategy of
each cycle is to further reduce the list of possible task table locations
qualifying for dispatch by setting the Capture Flip-Flops of those which fail
each test.

The highest-priority task is defined as the task having the lowest numer-
ic value in its User and Queue Priority fields. The bits of the User and
Queue Priority fields are examined sequentially, starting with the most-
significant bit and proceeding to successively less-significant bits of first
the Task User Priority field and then the Task Queue Priority field. The
Associative Memory Capture Flip-Flops are set by ones emanating from the User
and Queue Priority field bit positions of each respective entry only if so
doing does not cause all the Associative Memory Capture Flip-Flops to contain
ones. Setting of the Capture Flip-Flops is inhibited by logically gating the
Anticipated All Capture Gate (AACG) outputs of the Associative Memory banks
together and logically connecting the result to the Associative Memory Capture
Flip-Flop enable (NE). The output of the Bank and Bit Priority Logic is
stored in the Priority Register on each cycle. After all these bit positions
have been examined, the Priority Register contains the entry location index
corresponding to the task to be dispatched. Finally, the contents of the
Priority are moved to the Exchange Register for return to the host processor.

5.3.6 SIGNAL and WAIT Functions

The SIGNAL and WAIT functions permit separate tasks to coordinate their
utilization of common resources. A task requests access to a resource with
the WAIT function. If the resource is available, the task is given access.
Otherwise, the task is moved to the Waiting task state. A task releases claim
to a resource by using the SIGNAL function.
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Many executives have a flag associated with each resource, called a bi-
nary semaphore, to indicate whether the resource is available. There is no
physical bit internal to the Hardware Executive representing the semaphore.
Availability of a resource is implicitly known from the contents of the task
table Wait Semaphore fields. If no task in the Waiting task state has a par-
ticular Semaphore Identifier in its Wait Semaphore field, then the semaphore
is in the available state.

The SIGNAL function searches for the highest-priority nonsuspended task
whose Wait Semaphore field matches the Semaphore Identifier supplied by the
host processor. Once found, the task is placed in the Ready task state, its
Task Queue Priority field is loaded with the contents of the Task Queue
Priority Counter, and the Task Queue Priority Counter is incremented.
Finally, the Wait Semaphore field is cleared. The SIGNAL function should be
followed by a DISPATCH CHECK function since the task placed in the Ready task
state may have a higher priority than the task currently in the Running task
state.

The WAIT function first examines the Wait Semaphore fields of all nonsus-
pended tasks for a match with the Semaphore Identifier supplied by the host
processor. If none is found, the currently running task can continue to run,
since the resource is available. Otherwise, the task is moved to the Waiting
task state and the queue priorities of all tasks with a higher numeric Task
Queue Priority field are decremented. The Task Queue Priority Counter is also
decremented. In either case, the Semaphore Identifier is loaded into the Wait
Semaphore field. The WAIT function is followed by a DISPATCH CHECK function
since the host processor does not know if the currently running task can
continue running.

The identification of all tasks whose Wait Semaphore fields match the
Semaphore Identifier supplied by the host processor is accomplished as
follows. The Semaphore Identifier is located in the Exchange Register. Bit
Selection Logic permits the individual bits of the Exchange Register to be fed
to the Associative Memory Logic through the common EMIT signal. One microin-
struction cycle is executed for each bit position of the Wait Semaphore field.
The EMIT signal, containing a bit of the Semaphore Identifier, is subtracted
in parallel from each Associative Memory RAM output, containing a bit of the
Wait Semaphore field for the respective table entry, by the Associative Memory
Logic adder/subtractors. If the Semaphore Identifier is numerically equal to
the Wait Semaphore field, the subtracted result is a sequence of zeros, one
for each bit position of the Wait Semaphore field. If they are not numerical-
ly equal, at least one of the bits in the sequence is a one. The capture
function of the Associative Memory Capture Flip-Flops can be used to capture
the occurrence of any ones. Those Capture Flip-Flops still containing zeros
after all the bits of the sequence have been applied correspond to table
entries where a match exists.

5.3.7 Events

An event is defined as a "hardware- or software-initiated perturbation"

(8] that causes the executive to transfer control to special user-defined
processing. The event concept may be viewed as a generalization of the hard-
ware interrupt concept which includes pseudointerrupts initiated entirely by
software. An event is triggered from software by invoking a cause event func-
tion of the executive, with the event to be triggered passed as a parameter.
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Events caused by hardware interrupts are implemented by coding the cause event
function within the routine where hardware transfers control.

The Hardware Executive internally distinguishes between two types of
events, normal events and time events. Normal events are triggered explicitly
by the user through the CAUSE NORMAL EVENT function. They are identified by
an Event Identifier, the parameter passed to the CAUSE NORMAL EVENT function.
Time events are triggered by the expiration of a time interval. They can be
visualized as user-settable alarm clocks. Time events are identified by their
trigger time, an absolute time value on the Real-Time Clock internal to the
Hardware Executive.

Events are registered within the Hardware Executive by first obtaining an
event table location with the RESERVE NORMAL EVENT or RESERVE TIME EVENT func-
tion. Then the host processor directly loads the event table entry with the
event definition. The processing associated with an event is defined as a
task waiting on a semaphore. The host processor loads the Signal Semaphore
field with the Semaphore Identifier of the semaphore to be signalled when the
event is triggered. Several events may map into the same Semaphore Identifier
if desired. The Event State field is initialized as Armed.

5.3.8 CAUSE NORMAL EVENT Function

Normal events are organized into an event hierarchy. The Event Identi-
fier is divided into subfields, each subfield corresponding to one level of
the hierarchy. The most-significant subfield represents the top of the hier-
archy, the general class of event. The next most-significant subfield repre-
sents the subclass within the class represented by the most-significant sub-
field, and so on. The hierarchy permits the registration of default event at
each level in the hierarchy. A default event is triggered when the event
supplied by the user is not registered but the events class, subclass, subsub-
class, etc, are defined to the level of the default definition.

When the CAUSE NORMAL EVENT function is invoked, a search is first made
to determine whether an exact match exists between the given Event Identifier
and the nondefault event registrations in the event table. If none is found,
the search is repeated for the default event of the same level in the hier-
archy as the given event. If that fails, the search is repeated for the de-
fault event on the next highest level of the hierarchy. This process con-
tinues until the top of the hierarchy is reached. If there is no matching
default definition at the top, no event is triggered.

The CAUSE NORMAL EVENT function should be followed by a NORMAL EVENT
SIGNAL CHECK function to signal the semaphore associated with the newly
triggered event.

5.3.9 Time vent Triggering

The Real-Time Clock is not driven directly by a time-base oscillator.
The time-base oscillator generates a pulse which sets a flip-flop called the
Tick State Flip-Flop. The output of the Tick State Flip-Flop is wired into
the Transform of the Microsequence Control Logic. When the microprogram
branches to the address generated by the Transform, it will automatically
branch to a unique routine to process a Real-Time Clock tick when the Tick
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Flip-Flop is set. This routine increments the Real-Time Clock within the
Register Logic and clears the Tick Flip-Flop. It then compares the value of
the Real-Time Clock with the trigger time values of all the Time Events in
parallel. The event states of all time events whose trigger time value equals
the Real-Time Clock value are changed to the Triggered state.

5.3.10 Event Signal Check Functions

The processing associated with an event is defined as a task waiting on a
semaphore. The NORMAL EVENT SIGNAL CHECK and TIME EVENT SIGNAL CHECK func-
tions are used to signal the semaphore corresponding to the highest priority
triggered event. These functions move the event from the Armed state to the
Triggered state when they signal their associated semaphore. They return a
negative value to the host processor if no event is found in the Triggered
state. The NORMAL EVENT SIGNAL CHECK and TIME EVENT SIGNAL CHECK functions
should be followed by a DISPATCH CHECK function to identify the task that was
waiting on the semaphore signalled.

5.4 Circuit Design Considerations

This section presents various issues relating to the hardware design of
the Hardware Executive.

5.4.1 Associative Logic Design Alternatives

The design of the associative memory logic must permit the microprogram
instructions to address the same bit position of all table entries simultane-
ously. The design also must permit the modification of a single bit within a
single entry without affecting the rest of the table entries. Both require-
ments are satisfied by utilizing random access memory (RAM) integrated cir-
cuits with only one bit of data input and output. The component address
inputs are connected to the table entry bit position field of the microinstruc-
tion. Since there is one component for each table location, a separate write

enable per location permits modification of a unique bit.

The physical RAM implementing the associative memory would not need
individual integrated circuits for each bit position of the parallel accessed
word if a memory with independent write enables for each bit position were
available. Unfortunately, no off-the-shelf integrated circuit components with
this feature have been found. Another approach is to use a component with
only a single write enable, to read the output word of the component into a
latch, to modify only the desired bits in the latch, and then to write the
contents of the latch back into the memory. This approach saves power since
the address decoding logic inside each memory component is not replicated for
each output bit and because one can take advantage of a wider selection of
available low-power components. On the other hand, the approach requires more
complex logic and a longer microinstruction cycle time.

5.4.2 Size of Executive Tables

The maximum number of task or event registrations processed simultaneous-
ly within a single Hardware Executive module is equal to the number of associa-
tive memory locations, called elements, which are processed in parallel. The
SDEX/20 Version Log was examined to aid in the determination of an appropriate
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maximum per module. S)KX/20 (14] is the predecessor standard executive of

SDZX/M. The log contains the values assigned to the compile tipe parameters
for each released version. As of 21 October 1979, only 42 out of 60 compiled
versions are recorded in the log as delivered to users and are considered in
this study. Statistics were generated from the sizes of the version task
tables. SDEX/20 versions have from one to four task types, each type having
its own task table. The percentage of versions covered by associative
memories of various sizes are tabulated below.

Maximum Table Size ....... 16 32 64 128

All Tasks ................ 5 % 29 % 57 % 95 %

Successor Tasks .......... 29 % 57 % 8 % 100 %

Time-Dependent Tasks ..... 79 % 98 % 100 % 100 %

Time-Critical Tasks ...... 83 % 98 % 100 % 100 %

Background Tasks ......... 93 % 98 % 100 % 100 %

Considering all task types, 64 elements adequately cover the majority of
SDEX/20 versions, and 128 cover nearly all versions.

The quantity of hardware required to implement associative memories of
various sizes must also be considered. The table below tabulates the number
of integrated circuits and the power consumption for a typical TTL implementa-
tion of the associative logic.

Maximum Table Size ....... 16 32 64 128

Integrated Circuits ...... 46 92 184 368

Typical Power (watts) .... 5.96 11.92 23.85 47.69

Maximum Power (watts) .... 8.55 17.09 34.18 68.36

where each S-bit slice (bank) is implemented from:

2 25LS15 quad serial adder/subtractors
4 25LS158 2-to-1 inverting multiplexers
2 25LS258 2-to-i inverting three-state multiplexers
8 27LS01 256-word-by-l-bit random access memories
I 74LS00 quad 2-input HAND gate (address buffers)
1 74LS04 hex inverters (address buffers)
1 74S30 8-input NAND gate (all captured detect)
2 741S32 2-input OR gates (capture loop)
2 741398 4-bit 2-to-i multiplexer register.

The size selected will depend on the mechanical and electrical constraints of
the desired form factor. The demonstration breadboard contains 64 elements.

14. NAVKZX User's Handbook: AN/UYK-20(V) Computer Support Software, NAVELEX
0967-LP-598-2020, v 2, change 6, Oct 1978.
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Examining the components individually shows that 35 percent of the inte-
grated circuits and 74 percent of the typical power consumption are associated
with the 256-word-by-l-bit random access memories (Am27LSO1s) implementing the
associative memory. A large number of memory component data sheets were exam-
ined in a variety of technologies before selection. Thus selection of the
memory component is a critical design consideration.

5.4.3 xecutive Table Expansion

The maximum number of executive table entries could be expanded within
the same Hardware Executive module by constructing two or more tables in the
associative memory and manipalating them sequentially [15]. In such a scheme,
some of the memory component address lines would select the table while others
would select the bit position of an entry within the selected table. Locating
unused space for the additional tables in the memory components implementing
the associative memory is not a problem, since their capacity is far greater
than required. The design presented in this paper used fewer than half of the
256 bits available in the 27LS01. The NMOS 2125 or the CHOS 6508 are 1024-bit
integrated circuits which could be used if more space is required.

Another approach to executive table expansion is to provide additional
Hardware Executive modules for parallel operation. The priority logic of the
modules must be interconnected for the ensemble to generate a unique result.

The first method has the advantage of reducing the quantity of parallel
associative logic. The second method has the advantage of simpler micropro-
graming and faster execution. The second method is recounended because the
Hardware Executive application requires high-speed execution to beat the
memory resume interrupt of the computer to which it is connected.

6. ADVANTAGES OF THE HARDWARE DESIGN

This section sunmarizes the advantages of the hardware design presented
in the previous section.

6.1 REDUCED CONTEXT SWITCHING

One reason the Hardware Executive obtains high-speed execution of execu-
tive functions is the elimination of most context switching between the appli-
cation and the executive and between the executive and itself. Context
switching occurs when control of the computer resources is transferred from
one process to another. It consists of writing the content of the registers
associated with the former process into memory, and then loading the registers
with new content read from memory appropriate for the next process. Slow exe-
cution results from the large number of memory accesses. The Hardware Execu-
tive uses at most only one processor register, the register used for executive

15. Weinberger, Arnold, The Hybrid Associative Memory Concept, Computer
Design, Jan 1971, p 77-85.
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function operand transfer in machines not supporting memory-to-memory instruc-
tions. All its algorithms are performed internally. Thus there is no need to
save more than one processor register when an executive function is invoked.

6.2 HIGH-SPEED EXECUTIVE TABLE SEARCHING

Another reason the Hardware Executive obtains high-speed execution is
because it uses associative memory. Conventional executive implementations
perform table searches sequentially, examining each table entry one at a time
until a match is found. The internal associative memory permits all table
entries to be examined in parallel.

6.3 EXECUTION SPEED INDEPENDENT OF LOAD

The Hardware Executive performs internal table searching by examining a
single bit position of all table entries simultaneously. Thus the search time
is the same regardless of the number of active table entries. Performance of
the executive functions is easily predicted since it is not affected by load.
This simplifies the task of the system designer.

6.4 INDEPENDENCE FROM HOST PROCESSOR INSTRUCTION SET

The Hardware Executive is connected to the host processor in the same way
that a memory is connected. Functions are chosen by the selection of the
appropriate memory address within the Hardware Executive address space. There
is no requirement to augment or modify the host processor instruction set.
This permits simple retrofit of the Hardware Executive to existing computers.
It also permits the same basic unit to be attached to a large variety of dif-
ferent processor designs with only the memory interface logic changing from
design to design.

7. COST VERSUS BENEFITS

This section considers the cost and benefits of the Hardware Executive in
relation to other alternatives.

7.1 IDLE HARDWARE OJECTION

An NRL report by Shore published in 1971 (16] presents an important issue
concerning the application of associative processing as opposed to other types
of processing. The report first states that "one criterion ... useful in com-
paring alternate designs is the degree to which the processing hardware is
usefully busy." Terming the degree to which the hardware is usefully busy its
"duty cycle", the report holds that associative processing should be employed
only where this duty cycle is high. It further holds that associative proces-
sing is rarely justified since, with appropriate software techniques, a better
duty cycle can be obtained by using a conventional computer design.

16. Naval Research Laboratory Report 7364, Second Thoughts on Parallel

Processing, by John Z. Shore, 30 Dec 1971.

36

I



From the standpoint of the Hardware Executive by itself, its duty cycle
is very low. Since it is used only when requested by the host, it stands idle
most of the time. The duty cycle of the Hardware Executive actually decreases
as its execution speed increases. But the Hardware Executive is not intended
to be a stand-alone device. Like a high-speed multiplier, which in a conven-
tional computer may also stand idle a considerable amount of time, the Hard-
ware Executive is intended to increase significantly the overall performance
of the entire computer system through a proportionally small increase in the
total system hardware. The class of machines described in the report by Shore
is totally associative. The Hardware Executive, on the other hand, is a hard-
ware attachment to a conventional computer system.

7.2 RELATIVE SIZE OF THE HARDWARE

A 64-element Hardware Executive of the design presented requires approxi-
mately 310 to 330 integrated circuits, depending on the complexity of the host
processor interface. For comparison, this is roughly halfway between an
AN/AYK-14 CPU, with 424, and an AN/AYK-14 IOP, with 206. It should be noted,
however, that the AN/AYK-14 processors employ many LSI components while the
Hardware Executive is constructed entirely of SSI and MSI components. In
general, LSI components are both mechanically larger and require more power.
The typical power consumption of the Hardware Executive is 32.5 watts. This
is well below the 89-watt requirement of the AN/AYK-14 CPU and the 44-watt
requirement of the AN/AYK-14 IOP.

To gain some perspective, the chart below illustrates the relative costs
of the various components of AN/AYK-14 computer configurations. The chart in
figure 11 is based on 1979 prices for the AN/AYK-14.

FULL CONFIGURATION SMALL CONFIGURATION

S CPU

CPU 64k MEMORY 13.6%

16.9% 20.9% 3kMMR

29.0%

POWER SUPPLY

AND CHASSIS

252%16 1/0 CHANNELS AND CHASSIS

37.0% 43.0%

$51 500 $23 600

Figure 11. AN/AYK-14 price elements.
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Seen in this perspective, the cost of the Hardware Executive is small in
comparison with the total cost of the computer.

S. CONCLUSIONS

Large multiprocessing and distributed processing systems suffer from
diminishing returns in system performance as additional processors are added.
The slow execution speed of executive software is one of the principal causes
of this phenomenon. This report describes the design of special-purpose hard-
ware to overcome the software bottlenecks in executives. The design employs
an associative memory for high-speed manipulation of executive tables. It
minimizes the number of context switches by performing the executive functions
in hardware external to the host processor. Context switching is also mini-
mized by designing executive functions that are insensitive to pre-emption.
The interface between the Hardware Executive and the host processor is
achieved through the memory bus. This simple "memory-mapped" arrangement per-
mits interfacing to a large number of existing computers without modification
of their hardware or firmware. The interface also includes an interrupt for
time-critical events when this feature is desired.

The logic design and fabrication of a Hardware Executive has been com-
pleted. At the time of this writing, the hardware is in the process of being
interfaced to an AN/UYK-20 computer for testing.

38

- -.

t4



Rfl7

1. Brown, George E., et al, Operating System Enhancement through Firmware,
10th Annual Workshop on Microprogramming (Micro-10), 1977, p 119-133.

2. Burkhardt, Walter f., and Helmut E. Maier, Micos: A Micr~programmed
Hierarchical Operating System Nucleus and Its Performance Comparison,
11th Annual Microprograming Workshop (Micro-11), 1978, p 33.

3. Burkhardt, Walter H., and Ronald C. Randel, Design of Operating Systems
with Micro-Progranmed Implementation, Pittsburgh University, Sept 1973.

4. Chattergy, R., Microprogramed Implementation of a Scheduler, 9th Annual
Workshop on Microprograiing (Micro-9), 1976, p t5-t9.

5. Fogarty, J.R., et al, Hardware Command and Control System Study: Final
Report, Hughes Aircraft Co, Ground Systems Group, Fullerton CA, 18 Feb
1974, Navy contract N00123-73-C-2130 CDRL A002 submitted to Naval
Electronics Laboratory Center.

6. Smith, William B., et al, SYMBOL - A large experimental system exploring
major hardware replacement of software, SPRINT Joint Computer Conference,
1971, p 601-616.

7. Dearnley, P.A., Application level microcode to speed data base manage-
ment, Computer Journal, British Computer Society, v 22, no 3, Aug 1979, p
200-202.

8. Naval Electronic Systems Command, Computer Program Performance Specifica-
tion for Standard Executive for use with AN/UYK-20 and AN/AYK-14 Com-
puters, SDEX/M; NAVSZA 0967-LP-598-2710, change 1, Dec 1980.

9. Chen, Tien Chi, Parallelism, Pipelining, and Computer Efficiency, Com-
puter Design, Jan 1971, p 69-74.

10. Wlfinghoff, Donald R., Code Activated Switching: A Solution to Multipro-
cessing Problems, Computer Design, Apr 1971, p 67-71.

11. Mundell, J.L., et al, Conceptual Design of a Distributed Combat Direction
System for a Modular Frigate (SEAMOD FFGX), prepared by System Explora-
tion, Inc, under Navy Contract N00123-76-C-0787, Feb 1978, for Naval
Ocean System Center, NOSC Technical Note 356.

12. Sperry Univac, Defense Systems Division, Navy Standard Computer Adapta-
tion Study, v 1: Application Requirements, Navy Contract
N66001-78-C-0258, July 1979, Final Report, prepared for NOSC.

13. Kuhns, Richard C., A Serial Data Bus System for Local Processing Net-
works, 18th IEEE Computer Society International Conference, Spring 1979,
IEEE Catalog no 79CH1393-SC, p 266-271. (SHINPADS is also discussed in
the Naval Engineering Journal, April and June 1979.)

14. NAVELEX User's Handbook: AN/UYK-20(V) Computer Support Software, NAVELEX
0967-LP-598-2020, v 2, change 6, Oct 1978.

15. Weinberger, Arnold, The Hybrid Associative Memory Concept, Computer
Design, Jan 1971, p 77-85.

16. Naval Research Laboratory Report 7364, Second Thoughts on Parallel
Processing, by John E. Shore, 30 Dec 1971.

39



BIBLIOGRMPHY

1. Ramamoorthy, C. V., and Benjamin W. Wah, A Design of a Fast Cellular Asso-
ciative Memory for Ordered Retrieval, IEEE Transactions on Computers, v
C-27, no 9, Sept 1978, p 800-815. (Additional comments from Ya I. Fat,
ibid, v C-29, no 8, Aug 1980, p 756-757.)

2. Ruschitzka, Manfred, and R.S. Fabry, A Unifying Approach to Scheduling,
Communications of the ACM, July 1977, v 20, no 7, p 469-477.

3. Stonebraker, Michael, Operating System Support for Database Management,
Communications of the ACM, July 1981, v 24, no 7, p 412-418.

4. Vuillemin, Jean, A Data Structure for Manipulating Priority Queues,
Communications of the ACM, Apr 1978, v 21, no 4, p 309-315.

40

L4



APPENDIX A

MMCTIVE FUNCTIOMS

Executive function comuands are executed by reading or writing dedi-
cated memory address locations recognized by the Hardware Executive.

INITIALIZE

Purpose: To initialize the Hardware Executive.

Write: Anything since not used.

Function: Set all internal table locations to empty. All task and event
registrations are lost.

RESERVE TASK

Purpose: To get an empty task table location for a new task.

Read: If positive, the index to an empty task table location. If
negative, no more task table locations are available.

Function: Find the element with the lowest element address whose empty
task bit is zero.

SUSPEND

Purpose: To exclude a task from dispatching.

Write: Task identifier.

Function: If the task was in the Ready or Running task state, it is now
moved to the Suspended task state. If the task was in the
Waiting task state, it is now moved to the Suspended-Waiting
task state.

RESUME

Purpose: To discontinue task suspension.

Write: Task identifier.

Function: If the task was in the Suspended task state, it is now moved to
the Ready task state. If the task was in the Suspended-Waiting
task state, it is now moved to the Waiting task state. In the
latter case, a check is made to determine if the task is the
only task waiting on the semaphore. If so, the task is moved
to the Ready task state and the Wait Semaphore field is cleared.
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DISPATCH CHECK

Purpose: To determine the next task to run.

Read: If positive, the Task Identifier of the highest priority task
in the Ready or Running task state. If negative, no task is in
the Ready or Running task state.

Function: Find the highest priority task in the Ready or Running task
state.

SIGNAL

Purpose: To announce that a resource is available.

Write: Semaphore identifier.

Function: Using the task semaphore and task priority fields, find the
highest priority task waiting on the specified semaphore. Move
that task from the Waiting task state to the Ready task state
and clear the Wait Semaphore field. The signal command has no
net effect if no tasks are waiting on the specified semaphore.

WAIT

Purpose: To place the running task in the wait state if a resource is
not available.

Write: Semaphore identifier.

Function: Using the task semaphore fields, find any nonsuspended tasks
waiting on the specified semaphore. If one or more are found,
move the task invoking the WAIT function from the Running task
state to the Waiting task state. Write the specified Semaphore
Identifier into the Wait Semaphore field.

RESERVE NORMAL EVENT

Purpose: To get an empty normal event table location for a new normal
event registration.

Read: If positive, the index to an empty normal event table location.
If negative, no more normal event table locations are available.

Function: Find the normal event element with the lowest element address
whose empty element bit is zero.
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CAUSE NORMAL EVT

Purpose: To associate a normal event with a normal event registration.

Write: Normal Event Identifier.

Function: Using the event level, class, subclass and code fields, asso-
ciate the specified normal event with a unique event registra-
tion. Move the event registration from the Armed event state
to the Triggered event state.

NORMAL EVENT SIGNAL CHECK

Purpose: To signal the semaphore of the highest-priority triggered
normal event.

Read: If positive, the index into the normal event table of the
highest-priority event registration in the Triggered event
state. If negative, no normal event is in the Triggered event
state.

Function: Attempt to signal the semaphore associated with the highest
priority normal event registration in the Triggered event
state. If successful, return the event to the Armed event
state.

RESERVE TIME EVENT

Purpose: To get an empty time event table location for a new time event
registration.

Read: If positive, the index to an empty time event table location.
If negative, no more time event table locations are available.

Function: Find the element with the lowest-element address whose empty
element bit is zero.

TIME EVENT SIGNAL CHECK

Purpose: To signal the semaphore associated with the highest-priority
time event registration.

Read: If positive, the index into the time event table of the highest
priority time event registration in the Triggered event state.
If negative, there are no time event registrations in the
Triggered event state.

Function: Attempt to signal the highest-priority time event in the
Triggered event state. If successful, return the event to the
Armed event state.
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&PKMDIX B

TASK PRIORITY

TASK USER PRIORITY IQUEUE PRIORITY
TABLE

LOCATION TASK PARAMETERS

ES PROCESSOR jSTATE WAIT SEMAPHORE

NORMAL EVENT

NORMAL LVL CA
EET LVL CASSUBCLASS CODE

TBLE

LOCAION ES PROCfE=OR J STATE ISIGNAL SEMAPHORE

TIME
EVENT TRIGGER TIME
TABLE

LOCATION

B PROCESSOR SAESIGNAL SEMAPHORE

UNUSED

ES- EMPTY SIT
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APPEDIZX C

MICROINSTRUCTION FORNAT

Bit 31

Element Memory Write Control

0 Read

Reading is enabled for only those elements for which both the
Element Capture Flip-Flop and the Bank Capture Flip-Flop are
not set. The Element Memory Output for disabled elements
during a read operation is one.

1 Write

Writing is enabled for only those elements for which both the
Element Capture Flip-Flop and the Bank Capture Flip-Flop are
not set. The Element Memory Output of all elements during a
write operation is one.

Bits 30 -28

Capture Flip-Flop Function

The results of these functions appear at the Capture Flip-Flop out-
puts at the beginning of the next cycle. Unless otherwise noted, the
Element Memory Address Register is loaded with the contents of Bit
Position field.

0 0 0 No Change

0 0 1 Clear

All Bank and Element Capture Flip-Flops are cleared.

The Clear function is used to initialize the Cap-
ture Flip-Flops before a search operation.

0 1 0 Set

All Bank Capture Flip-Flops are set. The Element Capture
Flip-Flops are unchanged.

0 1 1 Prioritize

All Bank Capture Flip-Flops are set except the flip-flop for
the bank containing the Element Capture Flip-Flop that has
the lowest element address and is not set. All Element
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Capture Flip-Flops of the selected bank are set except the
flip-flop of the selected element. The Element Capture
Flip-Flops in all banks are set identically. The Priority
Register is loaded with the selected element address. It is
cleared when no element is selected.

The Prioritize function normally follows a winnow
function to select a unique element from all those
elements not captured after a search operation.

1 0 0 Exclusive Winnow

If an Element Capture Flip-Flop is set, it remains set.
Otherwise, it is set if the output of the respective serial
arithmetic unit is one and in so doing does not leave all
Element Capture Flip-Flops set. The Bank Capture Flip-Flops
are cleared.

The Exclusive Winnow function is used when search-
ing for a field with the lowest numeric value.
Since at least one field satisfies the search, the
function inhibits the setting of any Element Cap-
ture Flip-Flops if so doing will leave all of them
set.

1 0 1 Inclusive Winnow

If an Element Capture Flip-Flop is set, it remains set.
Otherwise, it is set if the output of the respective serial
arithmetic unit is one. The Bank Capture Flip-Flops are
cleared.

The Inclusive Winnow function is used when search-
ing for a field whose contents are identical to
some key. Since possibly no field satisfies the
search, the function permits all the Capture Flip-
Flops to be simultaneously set.

1 1 0 Exchange Register Addressed

All Bank Capture Flip-Flops are set except the flip-flop for
the bank selected by bits 5 through 3 of the Exchange
Register. All Element Capture Flip-Flops in each bank are
set except the flip-flop selected by bits 2 through 0 of the
Exchange Register. The Element Capture Flip-Flops in all
banks are set identically.

The Exchange Register Addressed function permits
the specification of the element address by the
host processor Write Data, as required for the
Suspend and Resume state change executive functions.
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1 1 1 Host Processor Address Selected

All Bank Capture Flip-Flops are set except the flip-flop for
the bank selected by bits 5 through 3 of the Exchange
Register. All Element Capture Flip-Flops in each bank are
set except the flip-flop selected by bits 2 through 0 of the
Exchange Register. The Element Capture Flip-Flops in all
banks are set identically. The Host Processor Address
Selected function also places CPU Address Register bits 3
through 0 into Element Memory Address Register bits 7 through
4. Microinstruction bits 11 through 8 supply Element Memory
Address Register bits 3 through 0 as usual.

The Host Processor Address Selected function

selects a word within an element of the element
memory for direct CPU access.

Bits 27 - 24

Register Function

0 0 00 No Change

0 0 0 1 Increment Time Counter

0 0 1 0 Increment Sub-Priority Counter

0 0 1 1 Decrement Sub-Priority Counter

0 1 0 0 Load Upper Time Counter from Exchange Register

0 1 0 1 Load Lower Time Counter from Exchange Register

0 1 1 0 Load Sub-Priority Counter from Exchange Register

0 1 1 1 Element Memory Loop

The Element Memory Loop function connects the data input of
the memory associated with each element to the serial adder
output generated on the preceding cycle for the respective
element.

1 0 0 0 o Change

1 0 0 1 Shift Exchange Register Right

1 0 1 0 Store Sub-Priority into Exchange Register

1 0 1 1 Store Upper Time Counter into Exchange Register

I 1 0 0 Store Lower Time Counter into Exchange Register
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I 1 0 1 Store Priority Register into Exchange Register

1 1 1 0 Store Data Input from Host Processor into Exchange Register

I I I I Store Address Input from Host Processor into Exchange Register

Bits 23 - 22

Serial Arithmetic Function

Initialization of the Output and Carry flip-flops of the serial arith-
metic unit occurs immediately. The results of the Add and Subtract
functions are not available until the beginning of the next cycle.

0 0 Clear Output, Clear Carry

0 1 Clear Output, Set Carry

1 0 Add

1 1 Subtract

Bits 21 -. 19

Binary Operand Select

If Bit 23 is zero, the output is cleared regardless of the contents
of Bits 21 through 19. The results of these functions are not avail-
able at the data inputs of the element memory and the serial arithme-
tic unit until the beginning of the next cycle.

0 0 0 Zero

0 0 1 Two

0 1 0 Sub-Priority

The 16 Sub-Priority Counter bit positions are addressed by
the least-significant bits of the Bit Position field.

The Sub-Priority Counter supplies the contents of
the task element sulpriority fields when tasks are
moved to the ready or running task state. It is
used to implement queuing within user-supplied
priority levels.
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0 11 One

1 0 0 Time Plus Exchange Register

The bit positions of the Time Counter and the Exchange
Register are addressed by the least-significant bits of the
Bit Position field. They must be addressed sequentially from
least to most significant for the proper sum to be computed
serially.

This function is used to add a time interval sup-
plied by the user through the Exchange Register to
the current time maintained in the Time Counter to
form the trigger time for time events.

1 0 1 Time

The 32 Time Counter bit positions are addressed by the least-
significant bits of the Bit Position field.

The Time Counter provides a time base for time-
dependent and time-critical events. The output of
the Time Counter is compared with the contents of
the trigger time registered with timed events to
determine whether the event should be triggered.

1 1 0 Exchange Register

The 16 Exchange Register bit positions are addressed by the
least-significant bits of the Bit Position field.

11 I Zero

Reserved for the future.

Bits 18- 16

Branch and Host Interface Control

0 0 0 Clear Host Interface Busy

Bit 0 of the next microinstruction address is zero. Host
Interface Busy is cleared.

0 0 1 Pulse Host Interface Data Available

Bit 0 of the next microinstruction address is zero. Host
Interface Data Available are strobed.
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0 1 0 Clear Tick Flag

Bit 0 of the next microinstruction address is zero. The Tick
Flag is cleared.

The Tick Flag is set by the tick interval counter.
It is cleared by the microprogram after completing
the triggering of timed events.

0 1 1 Pulse Host External Interrupt

The External Interrupt line is pulsed.

The External Interrupt line is pulsed by the micro-
program when a time-critical event is identified.

1 0 0 Zero

Bit 0 of the next microinstruction address is zero.

1 0 1 One

Bit 0 of the next microinstruction address is one.

1 1 0 All Capture Flag

Bit 0 of the next microinstruction address is zero if all the
Element Capture Flip-Flops are set. Otherwise, it is one.

1 1 1 Transform

Bit 0 of the next microinstruction address is one. Bits 8
through I of the next microinstruction address are the
logical bitwise OR of the command transformed from the host
processor memory address lines and bits 7 through 0 of the
microinstruction.

Bits 15 - 8

Bit Position

The Bit Position field specifies the element bit position within the
element memory by loading the Element Memory Address Register. Excep-
tions are noted in the description of the Capture Flip-Flop Function
field. It also specifies the register bit position when the Binary
Operand Select field selects a register. The specified bit position
address is available to the element memory and selected register at
the beginning of the next cycle.
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Bits 7 - 0

Next Microinstruction Address

The Next ,i croinstruction Address field specifies bits 8 through I of
the next microinstruction address. Bit 0 of the next microinstruc-
tion address is generated by the Branch and Bus Control field.
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